Unilateral lower limb suspension does not mimic bed rest or spaceflight effects on human muscle fiber function.
نویسندگان
چکیده
We used Ca2+-activated skinned muscle fibers to test the hypothesis that unilateral lower leg suspension (ULLS) alters cross-bridge mechanisms of muscle contraction. Soleus and gastrocnemius biopsies were obtained from eight subjects before ULLS, immediately after 12 days of ULLS (post-0 h), and after 6 h of reambulation (post-6 h). Post-0 h soleus fibers expressing type I myosin heavy chain (MHC) showed significant reductions in diameter, absolute and specific peak Ca2+-activated force, unloaded shortening velocity, and absolute and normalized peak power. Fibers obtained from the gastrocnemius were less affected by ULLS, particularly fibers expressing fast MHC isoforms. Post-6 h soleus fibers produced less absolute and specific peak force than did post-0 h fibers, suggesting that reambulation after ULLS induced cell damage. Like bed rest and spaceflight, ULLS primarily affects soleus over gastrocnemius fibers. However, in contrast to these other models, slow soleus fibers obtained after ULLS showed a decrease in unloaded shortening velocity and a greater reduction in specific force.
منابع مشابه
Skeletal muscle unweighting: spaceflight and ground-based models.
Long-term manned spaceflight requires that flight crews be exposed to extended periods of unweighting of antigravity skeletal muscles. This exposure will result in adaptations in these muscles that have the potential to debilitate crew members on return to increased gravity environments. Therefore, the development of countermeasures to prevent these unwanted adaptations is an important requirem...
متن کاملLower limb skeletal muscle function
Berg, H. E., L. Larsson, and P. A. Tesch. Lower limb skeletal muscle function after 6 wk of bed rest. J. Appl. Physiol. 82(1): 182–188, 1997.—Force, electromyographic (EMG) activity, muscle mass, and fiber characteristics were studied in seven healthy men before and after 6 wk of bed rest. Maximum voluntary isometric and concentric knee extensor torque decreased (P , 0.05) uniformly across angu...
متن کاملEffects of spaceflight on murine skeletal muscle gene expression.
Spaceflight results in a number of adaptations to skeletal muscle, including atrophy and shifts toward faster muscle fiber types. To identify changes in gene expression that may underlie these adaptations, we used both microarray expression analysis and real-time polymerase chain reaction to quantify shifts in mRNA levels in the gastrocnemius from mice flown on the 11-day, 19-h STS-108 shuttle ...
متن کاملMuscle unloading-induced metabolic remodeling is associated with acute alterations in PPARdelta and UCP-3 expression.
A number of physiological changes follow prolonged skeletal muscle unloading as occurs in spaceflight, bed rest, and hindlimb suspension (HLS) and also in aging. These include muscle atrophy, fiber type switching, and loss of the ability to switch between lipid and glucose usage, or metabolic inflexibility. The signaling and genomic events that precede these physiological manifestations have no...
متن کاملMicrogravity-Induced Fiber Type Shift in Human Skeletal Muscle
Prolonged microgravity exposure alters human skeletal muscle by markedly reducing size, function, and metabolic capacity. Preserving skeletal muscle health presents a major challenge to space exploration beyond low Earth orbit. Humans express three distinct pure myosin heavy chain (MHC) muscle fiber types (slow fast: MHC I, IIa, and IIx), along with hybrids (MHC I/IIa, IIa/IIx, and I/IIa/IIx). ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 93 1 شماره
صفحات -
تاریخ انتشار 2002